G.H.Hardy - Bir Matematikcinin Savunması
Bilim Kitapları0 Mesaj
●12 Görüntüleme
- ReadBull.net
- E-Kitap Forumları
- Araştırma ve İnceleme Kitapları
- Bilim Kitapları
- G.H.Hardy - Bir Matematikcinin Savunması
-
19-07-2022, 03:00:13
Bir Matematikcinin Savunması, G.H. Hardy,
1935-40?lı yıllardaki Cambridge ve Oxford universitelerinin yoğun entelektuel atmosferini canlı bir bicimde aktarmaktadır. Ayrıca, doğal bir matematik dehası olan ama cok yetersiz bir matematik eğitimi gormuş olan Ramanujan adlı Hintli bir kÂtibin Hardy tarafından keşfinin ve bu iki farklı insanın kısa ancak verimli işbirliğinin oykusu de anlatılmaktadır.
Yazar HARDY kitabında; matematikte, yaşın cok onemli olduğunu, bir matematikcinin en onemli yıllarının 40 yaşına kadar olduğunu, 50 yaşın uzerindeki matematikcilerin matematiğe katkıda bulunamadığını hatırlatmaktadır.
Yaşının ilerlemesiyle yaratıcılığının azaldığını kabullenen ve bu nedenle matematik yapmak yerine matematik hakkında yazmak gibi ikinci sınıf bir iş yapmaya kalkıştığını belirtmiş, boylece matematiği savunurken kendi matematiğinden daha kalıcı ve değerli bir yapıt ortaya cıkarmıştır.
HARDY bu kitabında, genclere de seslenerek hırslı olmalarını ve bunun kendileri icin bir gorev olduğunu belirtmiştir. Hırsın bir tutku olduğunu, yerine gore farklı şekillerde olabileceğini, gercekleştirilmiş olan her turlu buyuk işin ardında itici bir gucun var olduğunu anlatmaktadır.
Bir araştırma icin gerekli olan başlıca guduler; merak ve başarıdır. Bu guduler matematik kadar şanslı olamaz. Cunku etkili teknikler, incelikler, kalıcı olanlar yine matematiktedir.
Yazar matematikcilerle ?diğer? insanların beyin işlevlerinin farklı olduğu, matematik yeteneğinin en ozel yeteneklerden biri olduğu savını desteklemektedir.
Matematikci icin en guzel işlerden birisi kendi konusunu, deneyimlerini ve matematikle uğraşmaktan aldığı hazzı ve bu hazzı matematikle uğraşmayanlara aktarmaya calışmak icin cabalamaktır. Matematiğin savunmasını yaparken yararları ne olursa olsun ovguyle bahsedilemez. Cunku binlerce tarzda buluşlar ortaya konmuştur,
buhar makineleri ve dinamolar matematiğin değerleri konusunu ortaya cıkarmıştır.
Yazar matematiği savunurken biraz da konuyu okuyanları etkilemek icin matematiğin gunluk hayatta daha cok tanınan muhendislik ve fizik gibi alanlardaki uygulamalarından ornekler vermiştir. Bir matematikci icin geleceğin ona haksızlık yapmasından korkmasına gerek yoktur. Matematikcilerle, fizikcilerin bakış acıları arasında, genelde sanıldığından cok daha az fark bulunduğunu, en onemlisinin matematikcilerin gercek ile cok daha fazla ilişkisinin olduğunu soylemektedir.
Matematik hangi bolumlerde yararlıdır? Okul matematiğinin tumu aritmetik, cebir gibidir. Bundan başka okul matematiğinden daha ileri ve geliştirilmiş olan universite matematiğinin genişce bir bolumu; elektrik gibi fiziksel ve ağır bazı yonleri yararlıdır. Buradan şunu cıkarabiliriz; ust duzey bir muhendis veya vasat bir fizikci icin gerekli olan matematik yararlıdır.
İnsanların yaşamları, gunluk işleri, toplumun orgutlenmesi uzerinde muazzam etkisi olan matematik dışında sıradan kişilerce kullanılan matematik onemsenmeye değmez. Oysa kitapta yazar, matematiğin ozunu, guzelliğini ve derinliğini aldığı sanattan, edebiyattan, satranctan orneklerde vererek yalın fakat işlek bir dille anlatmayı başarıyor.
Matematiğin savaş uzerindeki etkilerini de duşunmek durumundayız. Gercek matematikcilerle ilgili olarak rahatlatıcı bir sonuca kolaylıkla varabiliriz. Gercek matematiğin savaş uzerinde hicbir etkisi yoktur. Ote yandan onemsiz matematiğin savaşta pek cok uygulama alanı vardır. Balistik uzmanlar; ucak tasarımcıları, matematiksiz yapamazlar. Buradan matematiğin yararlı olup olmadığı ya da hangi yonlerinin faydalı olduğu sorusu akla gelmektedir. Eğer yararlı bilgi, şimdi veya yakın bir gelecekte insanlığın maddi refahına bir katkısı olan bilgi ise, bu konuda entelektuel doyumun bir yeri olacaksa yuksek matematiğin bir bolumu yararsızdır.
Bir matematikci icin, uyguladığı matematik bir sakinleştirici olabilir, o butun sanat ve bilim arasında yalın ve ırak olandır. Matematiğin iceriği, derin duşunceye dalmak değil, yaratıcı olmakla ilgilidir. Gercekte matematikte daha populer olan cok az konu vardır. Coğu kişinin guzel bir melodiden zevk aldığı gibi bircok kişi de matematikten bir olcude hoşlanır. Matematiğe ilgi duyanların sayısı muzikle ilgilenenlerden fazladır. Muzik kitlelerin duygularını harekete gecirebilir. HÂlbuki satranc oyunu, bric, gunluk gazetelerdeki bulmacalar butun bu kitlelerin matematiğe olan ilgi ve takdirinin bir ifadesidir. Tıpkı bir ressam veya şair gibi bir matematikci de kalıplar uretir. Matematikcinin kalıpları diğerlerinin kullandığı kalıplardan daha kalıcıdır. Bunun nedeni de duşuncelerden oluşmuş olmasıdır. Matematikcinin kalıpları da bir ressam veya şairin kalıpları gibi guzel olmak zorundadır.
Duşunceler ise renkler ve sozcukler gibi uyum icindededir. Bir bilim ve sanat dalındaki gelişme, insanların maddi olarak refahını artırıyorsa, buna yararlı diyebiliriz. Bunun icin tıp, fizyoloji ve muhendislik evler ve koprulerin yapımına katkıda bulunarak insanların hayat standartlarını yukselttiği icin yararlıdır. Matematiğin bu anlamda cok yararları vardır. Bir matematikcinin en guzel işlerinden birisi, kendi konusunu, deneyimlerini ve matematikle uğraşmaktan aldığı hazzı matematikci olmayanlara aktarmaya cabalamaktır.